PDFs from an EIC perspective

Alberto Accardi

Hampton U. and Jefferson Lab

Joint CTEQ meeting / POETIC 7 Temple U., 16 November 2016

Why PDFs?

Accardi – MPLA 28 (2013) 35 / PoS (DIS2015) 001 Forte and Watt – Ann.Rev.Nucl.Part.Sci. 63 (2013) 291

- ☐ **High-energy** (large to small x)
 - Beyond the Standard Model searches
 - Precision (Higgs) physics
 - NuTeV weak mixing angle
 - Gluonic "matter" at small x
- Hadron structure (large to medium x)
 - Effects of confinement on valence quarks
 - q qbar asymmetries; isospin asymmetry
 - Strangeness, intrinsic charm
- Nuclear Physics
 - Bound nucleons, EMC effect, SRC
 - p+A and A+A collisions at RHIC / LHC
 - Color propagation in nuclear matter

Why PDFs?

Accardi – MPLA 28 (2013) 35 / PoS (DIS2015) 001 Forte and Watt – Ann.Rev.Nucl.Part.Sci. 63 (2013) 291

- ☐ **High-energy** (large to small x)
 - Beyond the Standard Model searches
 - Precision (Higgs) physics

 \rightarrow *J. Houston*

- NuTeV weak mixing angle
- Gluonic "matter" at small x
- Hadron structure (large to medium x)
 - Effects of confinement on valence quarks
 - q qbar asymmetries; isospin asymmetry
 - Strangeness intrinsic charm
- Nuclear Physics
 - Bound nucleons, EMC effect, SRC
 - p+A and A+A collisions at RHIC / LHC
 - Color propagation in nuclear matter

A PDF landscape

A nPDF landscape

LT

NUCL

TMC/HT

RESUM

x > 1, SRC,

exotica

Needs the betrothal of HEP and NUCL

A global approach across subfields

Enters the EIC

The EIC is the machine to bind them all

Enters the EIC

- Interpolates fixed target and HERA
- ☐ Large *Q*² leverage
 - More evolution at large x
 - Better separation of LT and HT
- \square High luminosity \rightarrow large x capabilities

EIC can "do it all":

- "Easy" spectator tagging in DIS
- − Strong PID capabilities: \rightarrow F_2^{c} , F_2^{cc} , Fragmentation Functions, ...
- High luminosity \rightarrow CC, PVDIS \rightarrow d/u, strange quarks, dbar/ubar, ...
- Unpolarized & polarized scattering (also light ions)
- Nuclear targets → K. Kovarik

Example 1: Tevatron as NUCL facility (!)

Accardi, Brady, Melnitchouk, Owens, Sato, PRD93 (2016) 114017

 \square **Reconstructed W** \rightarrow constrain d-quark at largest x on proton targets

$$A_W(y) \xrightarrow{x \to 1} \frac{1 - d/u(x_1)}{1 + d/u(x_1)}$$

- Compare to abundant deuteron DIS data:
 - → constrain deuteron corrections
 - \rightarrow precise *u*, *d* flavor separation

Example 1: Tevatron as NUCL facility (!)

Accardi, Brady, Melnitchouk, Owens, Sato, PRD93 (2016) 114017

Two results in 1:

- → confinement at large x
- → off-shell corrections in deuteron PDFs

Example 2: large x PDFs at the EIC

Accardi, Ent, Keppel, Park, Yoshida – in progress

- Include EIC projected data in global fit:
 - $L = 100/fb @ 10x100 GeV^2 energy$
 - F2(proton), F2(deuteron), F2(tagged neutron) at 0.1 < x < 0.9

Example 2: large x PDFs at the EIC

Accardi, Ent, Keppel, Park, Yoshida – in progress

Results:

- The d quark precision will become comparable to current u!!
- The u quark uncertainty becomes less than 1%
- 20% improvement in g(x) through evolution
- Can impact BSM searches, e.g., heavy W' boson production at LHC

- 3.4σ excess in WZ diboson channel at ~ 2 TeV
- extended gauge model $W' \rightarrow WZ$ with M < 1.5 TeV excluded at 95% c.l.

$$\mathcal{L}_{W'} \to d(x_1) \, \bar{u}(x_2)$$
 at large $y_{W'}$ or $M_{W'}$

$$x_{1,2} \approx \frac{M_{W'}}{\sqrt{s}} e^{\pm y_{W'}}$$

Example 3: strange, strange quarks

Alekhin et al., arXiv:1404.6469

- Final state propagation of c quark / D meson
 - Not quite under theoretical or phenomenological control, yet (cf. heavy quark "puzzle" in A+A at RHIC, LHC)

Example 3: strange, strange quarks

- Use PVDIS projected data at EIC
 - → Y. Zhao [Mon]

$$A_{L} = \frac{G_{F}Q^{2}}{2\sqrt{2}\pi\alpha} \left[g_{V}^{e} \frac{g_{5}^{\gamma Z}}{F_{1}^{\gamma}} + g_{A}^{e} \frac{Y_{-}}{Y_{+}} \frac{g_{1}^{\gamma Z}}{F_{1}^{\gamma}} \right]$$

- Can constrain starnge at ~20% level, and
 - Help resolve LHC vs. v+A tension (also with RHIC W&Z, PVDIS@JLab12)
 - Study charm propagation in nuclear matter

— CJ15+EIC 15x250 GeV²

Large x at the EIC, 16 Nov 2016

Some final thoughts

EIC to bind them all

- EIC has excellent potential, for example, for
 - u, d, g flavor determination at large x \longleftrightarrow hadronic structure, BSM
 - Strangeness in complementary x range to LHC, similar to RHIC
 - Revolutionizing nuclear physics studies using hard probes

What else can we dream of doing at the EIC?

- Isospin violations
 - Play free n from BONUS/EIC vs. free p from D0, RHIC W-asym.
- Intrinsics charm
 - Positive signal only from (contested) EMC data
 - Take new and better data with EIC!
- Large leverage in A from light to heavy
 - Combined PDF / nPDF fits $\rightarrow K$. Kovarik (?)
 - Structure of light nuclei, by contrast with heavy & p, d
- Polarized and unpolarized data at large Q2 from same machine
 - Another combined fit \longleftrightarrow helicity separation
- □ SIDIS & DIS (at large Q2) from same machine $\rightarrow N.Sato$
 - Will reduce many uncertainties
 - Yet another combined fit \longleftrightarrow flavor separation